Simultaneous Increase of Electrical Conductivity and Hardness of Al–1.5 wt.% Mn Alloy by Addition of 1.5 wt.% Cu and 0.5 wt.% Zr
نویسندگان
چکیده
منابع مشابه
Co-Precipitation, Strength and Electrical Resistivity of Cu–26 wt % Ag–0.1 wt % Fe Alloy
Both a Cu-26 wt % Ag (Fe-free) alloy and Cu-26 wt % Ag-0.1 wt % Fe (Fe-doping) alloy were subjected to different heat treatments. We studied the precipitation kinetics of Ag and Cu, microstructure evolution, magnetization, hardness, strength, and electrical resistivity of the two alloys. Fe addition was incapable of changing the precipitation kinetics of Ag and Cu; however, it decreased the siz...
متن کاملCyclic Martensitic Transformations Influence on the Diffusion Of Carbon Atoms in Fe-18 wt.%Mn-2 wt.%Si alloy
A significant carbon diffusion mobility acceleration as a result of cyclic γ↔ε martensitic transformations in iron-manganese alloy is determined by one- and two-dimensional structure defects of ε-martensite with face-centered close-packed lattice. Such defects (dislocations, low angle sub-boundaries of dislocations, chaotic stacking faults) were formed during cyclic γ↔ε martensitic transformati...
متن کاملEffect of Sb Addition on the Solidification of Deeply Undercooled Ag-28.1 wt. % Cu Eutectic Alloy
Ag-28.1 wt. % Cu eutectic alloy solidifies in the form of eutectic dendrite at undercooling above 76 K. The remelting and ripening of the original lamellar eutectics result in the formation of the anomalous eutectics in the final microstructure. The addition of the third element Sb (0.5 and 1 wt. %) does not change the growth mode, but enlarges the volume fraction of anomalous eutectics because...
متن کاملEFFECT OF COOLING RATE AND GRAIN REFINEMENT ON THE MICROSEGREGATION IN Al-4.8 wt.% Cu ALLOY
Microsegregation is one of the most important phenomena occurs during solidification. It usually results in formation of some unexpected second phases which generally affect the mechanical properties and specially reduce the workability of casting products. The aim of this research is to study the effect of cooling rate and grain refinement on the microsegregation in Al-4.8 wt.% Cu. For this p...
متن کاملNanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering
The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metals
سال: 2019
ISSN: 2075-4701
DOI: 10.3390/met9121246